Journal of Fluorine Chemistry, 44 (1989) 1-14

Received: June 7, 1988; accepted: February 28, 1989

ONE-POT SYNTHESIS OF NEW FLUORINATED 4H-1,4-BENZOTHIAZINES AS POSSIBLE ANTICANCER AGENTS

R.R. GUPTA, A. THOMAS, R.K. GAUTAM and V. GUPTA

Department of Chemistry, University of Rajasthan, Jaipur-302015 (India)

SUMMARY

One pot synthesis of fluorinated 4H-1, 4-benzothiazines can be effected by the condensation and oxidative cyclization of substituted 2-aminobenzenethiols with β -diketone (pfluorobenzoylacetone) in DMSO. The reaction is believed to proceed via an enamino-ketone system. The structures have been confirmed by their elemental analyses and spectral studies. p-Fluorobenzoylacetone has been synthesized by Claisen condensation of ethyl acetate with p-fluoroacetophenone.

INTRODUCTION

Benzothiazines find a number of applications in chemotherapy $\begin{bmatrix} 1-8 \end{bmatrix}$. Such a wide spectrum of applications of benzothiazines has stimulated our interest to synthesize fluorinated 4H-1,4-benzothiazines by a one pot method.

0022-1139/89/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

Fluorinated phenothiazines 9-12 (analogues of 4H-1,4benzothiazines) are most effective drugs and we are designing fluorinated 4H-1,4-benzothiazines as possible anticancer agents.

The tremendous growth in the chemistry of organic fluorine compounds during the last few decades has been due to the unique properties conferred by the fluorine atom on molecules to which it is bonded. 5-Fluoro-uracil and 5-fluorotryptamine are highly effective drugs used in the treatment of cancer.

Keeping the above observations in view, we have undertaken the present investigation to develop one pot synthetic methodology for the title compounds to make them available for anticancer activity screening.

p-Fluorobenzoylacetone has been synthesized from the p-fluoroacetophenone by its reaction with ethyl acetate and sodium below 5 °C (Scheme 1)

Scheme 1

Fluorinated 4H-1,4-benzothiazines have been synthesized by the condensation and oxidative cyclization of substituted 2-aminobenzemethicls with B-diketone (p-fluorobenzoylacetone) in DMSO. The reaction is believed to proceed through the formation of an intermediate enamino-ketone (E). 2-Aminobenzenethiols (C) are readily oxidized to disulphides (D) under the reaction conditions [13,14] which undergo condensation followed by cyclisation yielding 1,4benzothiazines (Scheme 2).

 $R = H, Cl, CH_3, OCH_3$ $R_1 = H, SO_3H$ $R_2 = H, Cl, F, OCH_3, OC_2H_5$

Scheme 2

RESULTS AND DISCUSSION

All the melting points are uncorrected. The purity of the synthesized compounds was checked by thin layer chromatography. Infrared spectra of all compounds have been scanned in KBr on Perkin-Elmer spectrophotometer model 577 and their UV spectra were recorded on Perkin-Elmer UV spectrophotometer in EtOH. The IR spectra of all the 4H-1,4-benzothiazines exhibit a single sharp intense peak in the region 3230-3380 cm⁻¹ which corresponds to NH stretching vibrations. The sharp band in the region 1575-1610 cm⁻¹ is due to C=0 stretching vibrations. All the compounds exhibit sharp bands in the region 1350-1480 cm⁻¹ due to C-H deformation vibrations of CH₃ group. UV spectral data has been presented in the Table 2 along with the IR spectral data.

All the NMR spectra and ¹⁹F spectra have been recorded at 90MHz on Jeol FX 90 Q FT NMR using TMS as an internal standard in polysol and DMSO-d₆. The NMR spectra of all the benzothiazines having allylic linkage (C=C-CH₃) exhibit resonance signals in the region 1.92 - 1.78 Å. A singlet in the region 10.63 - 9.06 Å is ascribed to the NH proton in all the compounds. A triplet at 1.42 - 1.20 Å is due to CH₃ protons and quartet centered at 4.26 - 3.70 Å is assigned to CH₂ protons of ethyl group in compound(VIII). The multiplets in the region 8.13 - 6.39 Å are due to aromatic ring protons. ¹⁹F NMR spectra of all title compounds exhibit peaks at

TABLE 1

Physical data for fluorinated 4H-1,4-benzothiazines

4- ۲- 4-	M.P. °C	180-81	145-47	112-13	109-10	134
C C C C H 3	R2	н	H	Н	H	н
$\downarrow = 0$	R1	H	H	н	H	SO ₃ H
$-\alpha$	ĸ	H	C	och ₃	СН3	Н
K K	Comp. No.	н	II	III	IJ	٨

	ĺ											
Comp.	R	R.	R ₂	M.P.	Yield	Molecular	%	Found			% Calcd	
No.		1		ပ	*	Formula	υ	Н	z	υ	Н	N
н	H	H	н	180-81	65	c ₁₆ H ₁₂ NSFO	67.22	4.24	4.95	67.36	4.21	4.91
II	ប	Н	н	145-47	57	C ₁₆ H ₁₁ NSFC10	60.08	3.47	4.41	60.18	3.44	4.38
III	ocH ₃	н	Н	112-13	48	c ₁₇ H ₁₄ ^{NSFO} 2	64.88	4.46	4.48	64.76	4.44	4.44
IV	сн ₃	H	н	109-10	55	c ₁₇ H ₁₄ NSFO	68.12	4.70	4.72	68.22	4.68	4.68
Δ	Н	so ₃ H	Н	134	58	$c_{16}H_{12}NS_{2}FO_{4}$	57.76	3.58	4.22	57.65	3.60	4.20
Ĩ	н	H	ប	210-12	70	c ₁₆ H ₁₁ NSFCIO	60.32	3.42	4.35	60.18	3.44	4.38
IIV	Н	H	لير	197–98	65	$c_{16}H_{11}^{NSF}$	63.48	3.61	4.65	63,36	3,63	4.62
IIIA	H	H	oc2H5	194-95	68	$c_{18}^{H_16}^{NSFO_2}$	65.52	3.88	4.22	65.65	4.86	4.25
ň	Н	н	осн ³	176-77	72	$c_{17}H_{14}NSFO_{2}$	64.58	4.42	4.47	64.76	4.44	4.44
×	Н	н	сн ₃	220-22	75	c ₁₇ H ₁₄ NSFO	68.35	4.65	4.70	68.22	4.68	4.68

5

TABLE 2

Infrared and UV spectral data of fluorinated 4H-1,4-benzothiazines

	$\langle - \rangle_{\alpha}$	× S Z [⊥]	- сен4 5 СН3	م							
Comp. No.	æ	R1	R2	A	۵	υ	D (cm ⁻¹)) max [[nm] (log)		Solvent
H	H	H	н	3260	1590	1475 1350	I	462 (3.61),	326 (3 .64) ,	296 (3.57)	EtOH
II	ប	H	H	3370	1595	1470 1350	ı	442 (3.40),	324 (3.62),	292 (3.60)	EtOH
ĪTI	осн3	H	H	3380	1600	1475 1355	1260 1040		340(3.58),	298 (3 . 53)	EtOH
IV	сн 3	H	H	3330	1600	1465 1370	I		358(3.55),	306 (3.54)	EtOH
>	Ħ	н [£] os	н	3280	1595	1470 1350	I	448(3.47),	326(3.73),	294 (3.64)	EtOH
IV	H	H	CI	3280	1590	1465 1350	i	460(3.47),	332 (3. 50),	288 (3.58)	EtOH
IIV	Н	Н	۴٩	3230	1585	1480 1370	ı	460(3.39),	336 (3.99) ,	300 (3 • 57)	EtOH

EtOH	EtOH	EtOH
284 (3.37)	294 (3.64)	292 (3.55)
320(3.38),	332 (3.62),	320(3.52),
464 (3.50),	464(3.57),	424(3.41),
1245 1040	1260 1040	ı
1 4 70 1350	1460 1360	1465 1350
1590 1470 1350	1585 1460 1360	1600 1465 1350
3260 1590 1470 1350	3240 1585 1460 1360	3260 1600 1465 1350
oc ₂ H ₅ 3260 1590 1470 1350	0CH ₃ 3240 1585 1460 1360	CH ₃ 3260 1600 1465 1350
Н 0С ₂ Н ₅ 3260 1590 1 4 70 1350	H OCH ₃ 3240 1585 1460 1360	Н СН ₃ 3260 1600 1465 1350
Н Н ос ₂ н ₅ 3260 1590 1 4 70 1350	н н осн ₃ 3240 1585 1460 1360	Н Н СН ₃ 3260 1600 1465 1350

A = N-H stretching vibrations

B = C=O (carbonyl) stretching vibrations

C = -CH deformation vibrations

D = C-0-C bonding

e	
CABLE	
۰.	

PMR and ¹⁹r spectral data of fluorinated 4H-1,4-benzothiazines $R_2 - C_6 H_4 f_- b_0$

	$= -\alpha$	\ I		13						
Comp. No.	сс	R1	R2	Solvent	(wdd)	Multiplicity	Assignment(s)	Solvent	(udd)	Assign- ment
н	H	н	Н	Polysol	7.81-6.74 1.83 9.07	multiplets singlet singlet	aromatic protons CH ₃ protons at C ₃ N-H proton	Polysol	- 105 . 644	F at C_2
II	ដ	H	н	Polysol	7.90-6.79 1.96 9.58	multiplets singlet singlet	aromatic protons CH ₃ protons at C ₃ N-H proton	OSMG	-104.543	F at C ₂
III	оснз	н	н	Polysol	7.90-6.79 4.06 1.92 9.21	multiplets singlet singlet singlet	aromatic protons OCH ₃ protons at C ₅ CH ₃ protons at C ₃ N-H proton	DMSO	-104.369	F at C ₂
II	сн ³	н	н	Polysol	8.13-7.01 2.23 1.92 10.63	multiplets singlet singlet singlet	aromatic protons CH ₃ protons at C ₅ CH ₃ protons at C ₃ N-H proton	DMSO	- 105.586	F at C ₂
>	H	н ^с оз	н	Polysol	7.81-6.65 1.83 9.06	multiplets singlet singlet	aromatic protons CH ₃ protons at C ₃ N-H proton	OSMQ	-105.412	F at C ₂

at c_2	at c_2 at c_7	at C ₂	at c_2	at c_2
Гч	દય દિવ	۶u	<u>بع</u>	f4
-102.921	-105.644 -115.374	-103.790	-106.223	-103.327
DMSO-d ₆	DMSO	DMSO	Polysol	DMSO-d6
aromatic protons CH ₃ protons at C ₃ N-H proton	aromatic protons CH ₃ protons at C ₃ N-H proton	aromatic protons CH, protons of $C_{2}H_{5}$ group at C_{7} CH_{3} protons of $C_{2}H_{5}$ group at C_{7} CH_{3} protons at C_{3}	N-H proton aromatic protons OCH ₃ protons at C ₇ CH ₃ protons at C ₃ N-H proton	aromatic protons CH ₃ protons at C ₇ CH ₃ protons at C ₃ N-H proton
multiplets singlet singlet	multiplets singlet singlet	multiplets quartet Triplet singlet	singlet multiplets singlet singlet singlet	multiplets singlet singlet singlet
7.86-6.70 1.78 9.38	. 7.72-6.56 1.78 9.18	7.72-6.39 4.26-3.70 1.42-1.20 1.78	9.11 7.81-6.39 3.70 1.83 9.07	7.86-6.52 2.19 1.83 9.29
DMSO-d ₆	Polysol	Polysol	Polysol	DMSO-d ₆
CI	í¤	0C2H5	оснз	сн 3
H	н	н	н	H
H	H	ж	Ħ	H
IA	IIV	IIIA	XI	×

TABLE	4			
Mass s	pectra	l data	of fluori	nated 4H-1,4-benzothiazines
R2	$\langle =$) ري	.С-С6Н4F-} 0	
K t		-< ∠=	CH3	
Comp. No.	<u>م</u>	R1	R2	M ⁺ m/z (Rel. Intensity)
н	н	н	Н	285(445.3), 123(1000.0), 95,76,162(550.4), 161,120,284
II	ដ	н	н	319(574.4), 123(1000.0), 95,76,196(131.2), 195,154,119,283 160, 318(67.8)
III	ocH ₃	н	н	315(281.7), 123(1000.0), 95,76,192(143.6), 178(67.1), 150, 151,136,300,272,149(59.4),314
ΛI	сн ₃	н	Н	299(4.9), 123(1000.0), 95,76,176,161,120,258,243,163,148,298
Δ	н	so ₃ H	H	365, 123(1000.0), 95,76,285(328.6),244,121(54.5),242,178,163, 162(405.7),130
ľ	Н	н	C1	319(245.2), 123(1000.0), 95,76,196(336.4),195,160,119,318
IIV	н	н	ĥ	303(837.7), 123(1000.0), 95,76,180,139,120,284,161,302(74.5)
IIIV	н	н	oc ₂ H5	329(306.5), 123(665.8), 95,76,206(1000.0),178(417.0),134, 328, 299,271,176,135
XI	н	Н	осн ³	315(296.6), 123(591.2), 95,76,192(1000.0), 177(65.3), 149(156.7), 108,300,272,314
x	н	н	сн ₃	299(368.6), 123(828.3), 95,76,176(1000.0), 161,135,120,298, 283,178,163(78.8)

-102.921 - -106.223 ppm (relative to hexafluorobenzene with 19 F signal at -162.9 ppm) due to fluorine at p-position in the benzene ring of side chain at 2-position. However compound(VII) (in Table 1) exhibits an additional signal at -115.374 ppm due to the fluorine at 7-position in the heterocyclic ring system. NMR and 19 F spectral data are presented in the Table 3.

Mass spectra of all compounds were recorded on Jeol, JMSD-300 mass spectrometer at 70 eV with 100 amp ionizing current. The mass spectra of all the compounds showed molecular ion peaks corresponding to their molecular weight. Mass spectral data included in the Table 4.

EXPERIMENTAL

Preparation of p-fluorobenzoylacetone

Sodium wire was suspended in ice cold dry ethylacetate (200 ml), contained in a 500 ml three necked flask, fitted with a reflux condenser, mechanical stirrer and dropping funnel. p-Fluoroacetophenone (0.25 mol) was slowly added from the dropping funnel to the ice cold reaction mixture with continuous stirring for 2.0 - 2.5 hrs and allowed to stand overnight. The sodium salt of p-fluorobenzoylacetone was filtered and washed with benzene. It was dissolved in the minimum amount of water and decomposed by dil. acetic acid. The separated oil was extracted with ether and the ethereal solution after being washed with water was dried over anhydrous sodium sulphate. The ether was evaporated and the residual liquid was distilled under reduced pressure $117^{\circ}C$ at 4mm [15].

Preparation of fluorinated 4H-1,4-benzothiazines

To the stirred suspension of β -diketone (p-fluorobenzoylacetone) (B;0.01 mol) in DMSO (5 ml) was added substituted 2-aminobenzenethiol (C;0.01 mol) and the resulting mixture was refluxed for 30 minutes. The reaction mixture was cooled down to room temperature and solid separated out was filtered, washed with methanol and crystallized from methanol. The physical and analytical data have been recorded in Table 1.

ACKNOWLEDGEMENT

We express our sincere thanks to U.G.C., New Delhi for the financial support. C.D.R.I, Lucknow is thanked for providing Mass Spectra. Prof. B.C. Joshi, Head of Department is thanked for encouragement.

REFERENCES

1 R.R. Gupta and K.G. Ojha, 1,4-Benzothiazines, in R.R. Gupta (ed.), 'Phenothiazines and 1,4-benzothiazines -Chemical and Bio-medical Aspects', Elsevier, Amsterdam (1988) and references therein.

- 2 F. Desimov, A. Dini, R.A. Nicolaus, E. Ramundo, M. Di Rosa and P. Persico, Pharmaco. Ed. Sci., <u>35(4)</u> (1980) 333.
- N.E. Mackenzie, R.H. Thomson and C.W. Green halgh,
 J. Chem. Soc. Perkin Trans, <u>1(12)</u> (1980) 2923.
- A. Takamizawa and H. Sato, Japan Pat. 7025 499 (1979);
 Chem. Abstr., <u>74</u> (1979) 3640.
- 5 C.F. Turk, P. Egli and J. Krapcho, J. Heterocyclic Chem., <u>14</u> (1977) 1135.
- 6 J. Krapcho, U.S. Pat. 4 078 062 (1978); Chem. Abstr., 89 (1978) 109526.
- 7 J. Krapcho, U.S. Pat. Appl. B. 348438; Chem. Abstr., <u>84</u> (1976) 180247.
- 8 T.V. Sokolova, K.I. Lopatina, I.V. Zaitseva, R.M. Salimov, N.P. Speranskaya and V.A. Zagorevakii, Khim. Farm. Zh. <u>10(9)</u> (1976) 42.
- 9 A/S. Kefales, Neth. Appl. 7 407 643 (1974); Chem. Abstr., <u>83</u> (1975) 10115.
- 10 H.F. Darling, G.H. Hess, A.C. Capistrano and M.G. Hoermann, Dis. Nerve. Syst., <u>21</u> (1960) 409.
- 11 H.L. Yale, F. Sowinski and J. Bernstein J. Am. Chem. Soc., <u>79</u> (1959) 4375.
- 12 J.J. Piala, J.J. Hassert, J.P. High and J.C. Buke, Monographs, <u>2</u> (1957) 214.
- 13 C.N. Yiannious and J.V. Karabinos, J. Org. Chem., <u>28</u> (1963) 3264.

- 14 S. Miyano, N. Abe, K. Sumoto and K. Teramoto, J. Chem. Soc. Perkin Trans. I, (1976) 1146.
- 15 K.C. Joshi and V.N. Pathak, Indian J. Chem., <u>10</u> (1972) 485.